223 research outputs found

    Body adiposity index to analyze the percentage of fat in young men aged between 7 and 17 years

    Get PDF
    BACKGROUND: The body adiposity index (BAI), uses anthropometry to estimate percent body fat (%F). However, previous studies have shown that the BAI has limited accuracy for children and adolescents. OBJECTIVE: We propose to develop and validate an adjusted BAI for use in male children and adolescents from 7 to 17 years of age. METHODS: The sample consisted of 141 physically active male children and adolescents (age: 12.5 ± 2.14). The %F was determined by X-ray dual energy absorptometry equipment (DXA) as the standard method and by BAI, using an equation that uses height and hip circumference. Arithmetic modeling was used to adjust the structure of the BAI mathematical model. RESULTS: The BAI arithmetic adjustment was successful, resulting in the mathematical model named in the present study of adjusted body adiposity index (BAIADJ ). BAI and BAIADJ correlated with DXA (r ≤ .70, p  .05). CONCLUSION: The adjusted model of the body adiposity index proves to be an effective tool for the analysis of the fat percentage in young males. In addition, it demonstrated significant degrees of agreement and validity in relation to DXA

    Levels of diphtheria and tetanus specific IgG of Portuguese adult women, before and after vaccination with adult type Td. Duration of immunity following vaccination

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The need for tetanus toxoid decennial booster doses has been questioned by some experts. Several counter arguments have been presented, supporting the maintenance of decennial adult booster doses with tetanus and diphtheria toxoids (adult formulation of the vaccine: Td). This study aimed to evaluate the use of Td in Portuguese adult women under routine conditions. For that purpose we selected a group of women 30+ years of age to which vaccination was recommended. We intended to know if pre-vaccination antibody concentrations were associated with factors as age at first and last vaccination, number of doses and time since last revaccination. We also intended to assess the serological efficacy of Td booster.</p> <p>Methods</p> <p>Following the Portuguese guidelines 100 women were vaccinated with Td. Antitetanus toxin IgG (ATT IgG) and antidiphtheria toxin IgG (ADT IgG) levels were measured (mIU/ml) in 100 pre-vaccination and 91 post-vaccination sera. Detailed vaccination records were available from 88 participants.</p> <p>Results</p> <p>Twenty-two women (Group A) began vaccination with DPT/DT in their early childhood and their pre-vaccination ATT IgG levels increased with the number of doses received (p = 0.022) and decreased with time since last vaccination (p = 0.016). Among the 66 women who began vaccination in adolescence and adulthood (Group B), with monovalent TT, ATT IgG levels decreased with age at first dose (p < 0.001) and with time since last vaccination (p = 0.041). In Group A, antidiphtheria toxin IgG kinetics was very similar to that observed for ATT IgG. Among women not vaccinated with diphtheria toxoid, ADT IgG levels decreased with age. Serological response to both components of Td was good but more pronounced for ATT IgG.</p> <p>Conclusion</p> <p>Our study suggests that, to protect against tetanus, there is no need to administer decennial boosters to the Portuguese adults who have complied with the childhood/adolescent schedule (6 doses of tetanus toxoid). The adult booster intervals could be wider, probably of 20 years. This also seems to apply to protection against diphtheria, but issues on the herd immunity and on the circulation of toxigenic strains need to be better understood.</p

    Alterations in Vitamin D signalling and metabolic pathways in breast cancer progression: a study of VDR, CYP27B1 and CYP24A1 expression in benign and malignant breast lesions Vitamin D pathways unbalanced in breast lesions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Breast cancer is a heterogeneous disease associated with different patient prognosis and responses to therapy. Vitamin D has been emerging as a potential treatment for cancer, as it has been demonstrated that it modulates proliferation, apoptosis, invasion and metastasis, among others. It acts mostly through the Vitamin D receptor (VDR) and the synthesis and degradation of this hormone are regulated by the enzymes CYP27B1 and CYP24A1, respectively. We aimed to study the expression of these three proteins by immunohistochemistry in a series of breast lesions.</p> <p>Methods</p> <p>We have used a cohort comprising normal breast, benign mammary lesions, carcinomas <it>in situ </it>and invasive carcinomas and assessed the expression of the VDR, CYP27B1 and CYP24A1 by immunohistochemistry.</p> <p>Results</p> <p>The results that we have obtained show that all proteins are expressed in the various breast tissues, although at different amounts. The VDR was frequently expressed in benign lesions (93.5%) and its levels of expression were diminished in invasive tumours (56.2%). Additionally, the VDR was strongly associated with the oestrogen receptor positivity in breast carcinomas. CYP27B1 expression is slightly lower in invasive carcinomas (44.6%) than in benign lesions (55.8%). In contrast, CYP24A1 expression was augmented in carcinomas (56.0% in <it>in situ </it>and 53.7% in invasive carcinomas) when compared with that in benign lesions (19.0%).</p> <p>Conclusions</p> <p>From this study, we conclude that there is a deregulation of the Vitamin D signalling and metabolic pathways in breast cancer, favouring tumour progression. Thus, during mammary malignant transformation, tumour cells lose their ability to synthesize the active form of Vitamin D and respond to VDR-mediated Vitamin D effects, while increasing their ability to degrade this hormone.</p

    Transcriptome dynamics and molecular cross-talk between bovine oocyte and its companion cumulus cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The bi-directional communication between the oocyte and its companion cumulus cells (CCs) is crucial for development and functions of both cell types. Transcripts that are exclusively expressed either in oocytes or CCs and molecular mechanisms affected due to removal of the communication axis between the two cell types is not investigated at a larger scale. The main objectives of this study were: 1. To identify transcripts exclusively expressed either in oocyte or CCs and 2. To identify those which are differentially expressed when the oocyte is cultured with or without its companion CCs and vice versa.</p> <p>Results</p> <p>We analyzed transcriptome profile of different oocyte and CC samples using Affymetrix GeneChip Bovine Genome array containing 23000 transcripts. Out of 13162 genes detected in germinal vesicle (GV) oocytes and their companion CCs, 1516 and 2727 are exclusively expressed in oocytes and CCs, respectively, while 8919 are expressed in both. Similarly, of 13602 genes detected in metaphase II (MII) oocytes and CCs, 1423 and 3100 are exclusively expressed in oocytes and CCs, respectively, while 9079 are expressed in both. A total of 265 transcripts are differentially expressed between oocytes cultured with (OO + CCs) and without (OO - CCs) CCs, of which 217 and 48 are over expressed in the former and the later groups, respectively. Similarly, 566 transcripts are differentially expressed when CCs mature with (CCs + OO) or without (CCs - OO) their enclosed oocytes. Of these, 320 and 246 are over expressed in CCs + OO and CCs - OO, respectively.</p> <p>While oocyte specific transcripts include those involved in transcription (<it>IRF6, POU5F1, MYF5, MED18</it>), translation (<it>EIF2AK1, EIF4ENIF1</it>) and CCs specific ones include those involved in carbohydrate metabolism (<it>HYAL1, PFKL, PYGL, MPI</it>), protein metabolic processes (<it>IHH, APOA1, PLOD1</it>), steroid biosynthetic process (<it>APOA1, CYP11A1, HSD3B1, HSD3B7</it>). Similarly, while transcripts over expressed in OO + CCs are involved in carbohydrate metabolism (<it>ACO1, 2</it>), molecular transport (<it>GAPDH, GFPT1</it>) and nucleic acid metabolism (<it>CBS, NOS2</it>), those over expressed in CCs + OO are involved in cellular growth and proliferation (<it>FOS, GADD45A</it>), cell cycle (<it>HAS2, VEGFA</it>), cellular development (<it>AMD1, AURKA, DPP4</it>) and gene expression (<it>FOSB, TGFB2</it>).</p> <p>Conclusion</p> <p>In conclusion, this study has generated large scale gene expression data from different oocyte and CCs samples that would provide insights into gene functions and interactions within and across different pathways that are involved in the maturation of bovine oocytes. Moreover, the presence or absence of oocyte and CC factors during bovine oocyte maturation can have a profound effect on transcript abundance of each cell types, thereby showing the prevailing molecular cross-talk between oocytes and their corresponding CCs.</p

    The SMC-5/6 Complex and the HIM-6 (BLM) Helicase Synergistically Promote Meiotic Recombination Intermediate Processing and Chromosome Maturation during<i> Caenorhabditis elegans</i> Meiosis

    Get PDF
    Meiotic recombination is essential for the repair of programmed double strand breaks (DSBs) to generate crossovers (COs) during meiosis. The efficient processing of meiotic recombination intermediates not only needs various resolvases but also requires proper meiotic chromosome structure. The Smc5/6 complex belongs to the structural maintenance of chromosome (SMC) family and is closely related to cohesin and condensin. Although the Smc5/6 complex has been implicated in the processing of recombination intermediates during meiosis, it is not known how Smc5/6 controls meiotic DSB repair. Here, using Caenorhabditis elegans we show that the SMC-5/6 complex acts synergistically with HIM-6, an ortholog of the human Bloom syndrome helicase (BLM) during meiotic recombination. The concerted action of the SMC-5/6 complex and HIM-6 is important for processing recombination intermediates, CO regulation and bivalent maturation. Careful examination of meiotic chromosomal morphology reveals an accumulation of inter-chromosomal bridges in smc-5; him-6 double mutants, leading to compromised chromosome segregation during meiotic cell divisions. Interestingly, we found that the lethality of smc-5; him-6 can be rescued by loss of the conserved BRCA1 ortholog BRC-1. Furthermore, the combined deletion of smc-5 and him-6 leads to an irregular distribution of condensin and to chromosome decondensation defects reminiscent of condensin depletion. Lethality conferred by condensin depletion can also be rescued by BRC-1 depletion. Our results suggest that SMC-5/6 and HIM-6 can synergistically regulate recombination intermediate metabolism and suppress ectopic recombination by controlling chromosome architecture during meiosis
    corecore